

Calculations For Shrink Fitting

The amount that a particular metal will expand can be calculated using the coefficient of thermal expansion:

 $\delta = \alpha L(\Delta t)$

 δ = Total deformation desired (in or mm)

 α = Coefficient of thermal expansion (in/in °F or mm/mm °C)

L = Nominal length of the part being heated (the diameter for a cylinder) (in or mm)

 Δt = Temperature difference (°F or °C)

The coefficient of thermal expansion (α) for a particular metal can be found in Table 1. The amount of holding stress developed once contraction of the outer hole has occurred can be calculated:

$$S_{t} = \frac{E * \Delta D}{4 * a} \left(1 + \frac{a^{2}}{b^{2}} \right) \qquad S_{r} = \frac{E * \Delta D}{4 * a} \left(1 - \frac{a^{2}}{b^{2}} \right)$$

• S_t and S_r = Tangential and radial stresses developed between the collar and the shaft.

• 'a' and 'b' = Internal and external radii of the collar

• E = Elastic modulus

 ΔD = Change of inner diameter of hole.

Table 1: Coefficient of Thermal Expansion and Elastic Modulus

Material	In/in °F	mm/mm °C	Elastic Modulu (E)
			psi (at 70°F)
Steel:			
AISI 1020	6.5×10^{-6}	11.7×10^{-6}	30×10^{6}
AISI 1050	6.1×10^{-6}	11.0×10^{-6}	29×10^{6}
AISI 4140	6.2×10^{-6}	11.2×10^{-6}	
Stainless Steel:			
AISI 301	9.4×10^{-6}	16.9×10^{-6}	28.0×10^{6}
AISI 430	5.8x10 ⁻⁶	10.4×10^{-6}	29.0×10^{6}
Aluminum:			
2014	12.8×10^{-6}	23.0×10^{-6}	10.5×10^{6}
6061	13.0x10 ⁻⁶	23.4x10 ⁻⁶	
Bronze:	10.0x10 ⁻⁶	18.0x10 ⁻⁶	17×10^{6}

* The elastic of modulus will decrease as temperature increases. At 1000° F, E, will be $22x10^{\circ}$ for steel.

